

Offensive Computer Security

180

Password Cracking
– Beyond Brute-Force
by Immanuel Willi

Most password mechanisms work by comparing a password against a stored reference
value. It is insecure to store the whole password, so one-way functions are used to create
hash values from the passwords. A one-way function ensures that a password is mapped
to a seemingly random (hash) value, but the (hash) value cannot be mapped back to a clear-
text password.

If the plain-text string is only minimally changed, ideally a completely different hash value is produced.
Since the password cannot be derived from the hash, all potential passwords need to be “hashed” with the
same hash function to determine the validity based on a comparison with the known hash value of the valid
password. The process of breaking hashes by guessing the original password is called „hash cracking“.

Table 1. Sample MD5 hashes

String MD5 hash
Oneconsult 00f2788f99a47aa6e9cb8afe66b5f033
oneconsult 1963754b8c04afa68f520cf214aebdeb
123456 e10adc3949ba59abbe56e057f20f883e

Instead of storing a password on a system to enable the authentication of a user, the hash value of the
password is stored to ensure that other users cannot directly read out the password. In contrast to operating
systems which store user passwords locally (in Windows the SAM file, in Linux „/etc/shadow“ and in Mac
OS X „/var/db/dslocal/nodes/Default/users/<user>.plist“), the password hashes of online shoppers are stored
in databases on the webserver. Another typical place where password hashes may be found is local scripts
or the Windows registry, which make passwords available for authentication in hard-coded form.

For a penetration tester, a found hash is an opportunity to expand the penetration test to surrounding systems,
if the password can be reconstructed from the hash. The same is true for an attacker. Reading out the hashed
passwords of all registered users of a database (e.g. by an SQL injection) may be attractive for criminals,
as such data may be sold on respective platforms. Not only penetration testers and hackers are interested in
breaking password hashes. By now, an active community of hash crackers has come to life with known groups
who regularly battle against each other in competitions. Participating groups receive lists of password hashes
which they need to crack within a given timeframe. It is from these competitions and from the community that
new ideas and tools are created with which hash cracking may be optimized.

The most obvious method to find the clear text of a hash value is the brute-force attack. There are no pre-
calculated values or tables used, but instead the attacker calculates all possible combinations of numbers, letters
and special characters until a hash value is found which corresponds to the original hash value. However, brute-
force attacks on hash values cannot be carried out within a reasonable timeframe given a certain length and
complexity of the clear text, as trying out different potential combinations (with traditional means) increases
exponentially with the password length. An alternative to systemically searching through the whole space of
conceivable passwords is to perform precomputation of a list of likely password candidates and generate a list
of known password hashes this way. For a given hash value, it is then possible to simply search this list to find
the associated password. Searching a list is much faster than brute forcing all conceivable passwords.

This precomputed hash list attack does not calculate the values at runtime like the brute-force method does.
Since the computation of hash values is carried out before the actual attack on the hash values, it does not
need to be done more than once. Therefore, it is possible to download such hash lists from the internet or even
search online for matching passwords given a known hash value. This process requires hardly any computing
time of the CPU, however, the dictionaries may ─ depending on their size ─ consume a lot of memory and the
precomputation is as slow as a regular brute-force attack.

Offensive Computer Security

181

A brute-force attack will take a lot of time, but will hardly use any physical memory for the attack. The perfect
attack would thus require an infinite amount of time. The opposite is true for a hash list attack, which could
theoretically list all possible passwords in a pre-calculated table. This alternative would use an infinite amount
of memory, but relatively little computing time. A combination of time and memory would thus be ideal.
The attack should be carried out using predefined tables to reduce computing time, but the tables should be
limited to a manageable size by means of the computations.

This idea was developed by Martin Hellman in 1980 in a time-memory tradeoff (TMTO) algorithm.
With a TMTO, predefined data for cryptanalysis is temporarily stored in memory. In an extended version of the
algorithm, developed by Ronald Rivest in 1982, the look-up in memory was massively reduced, which led to
an increase in speed. In 2003, Philippe Öchslin created the concept of the rainbow tables based on the TMTO,
which again halved the number of necessary computations. However, using rainbow tables can cause problems.
On the one hand, tables need to be calculated for every hash function and for each individual character set; on
the other, since the emergence of rainbow tables, hash values are usually salted. Salting denotes the technique
of mapping passwords to hash values depending on a random salt value in order to prevent precomputation.
For example, the salt value can be appended to the clear text before it is hashed. Rainbow tables would need
to be much larger to also include all possible combinations of additional characters next to the actual clear text.
Thus, by salting hash values, the effective use of rainbow tables is impeded.

Table 2. Example of an unsalted hash

Hash function(string) SHA1 hash
sha1(oneconsult) 9e422594d374752732eeeac9529eb14dec818e57

Table 3. Example of a salted hash

Hash function(salt+string) SHA1 hash
sha1(123456+oneconsult) a348809498f93e132bd211b8ec4838be416e0abf

Current Methods and Approaches

Optimizing Cryptanalysis on Hardware
Computations for cryptanalysis have long been carried out only on the CPU. Modern Graphical Processing
Units (GPUs), the processors on graphic cards, are optimized to graphically display sophisticated computer
games and 3D applications in real time. In games, millions of polygons need to be computed in parallel
for the gaming world to appear as realistic as possible. The development of graphic cards has been optimized
in the past 10 years for the parallelization of small computations. Manufacturers outdo each other with each new
generation of graphic cards and their technical performance. The parallel computation of “simple” calculations
corresponds exactly to the requirements for the computation of many single hash values in cryptanalysis.
Tools like John The Ripper1 or oclHashcat2 use these capabilities to compute hashes at a tremendous speed on
the GPU instead of the CPU.

Table 4. Comparison of CPU to GPU

CPU GPU
Test hardware: Intel Core i7-4770 CPU @ 3.40GHz ATI Radeon R9 290x, Hawaii, 3072MB,

1040Mhz, 44MCU
Software: hashcat-0.49 (--benchmark -m 0) oclHashcat-1.36 (--benchmark -m 0)
Hash function: MD5 MD5
Speed: MH/s: 99.08 MH/s: 12035.6

Cryptanalysis on the GPU is 121.5 times faster than on the CPU. The CPU in the test setup computes
99 million MD5 hashes per second, the GPU 12 billion.
1 John the Ripper with jumbo patch: http://www.openwall.com/john/
2 OclHashcat: http://hashcat.net/oclhashcat/

Offensive Computer Security

182

An alternative to buying hardware is to use computing power in the cloud. Various vendors, such as Amazon
with the EC2 Cloud, offer GPU instances for hire. The used hardware may be scaled up by adding additional
GPUs. Although prices look affordable at first sight, it is worth considering whether the hiring costs should not
rather be invested in hardware.

Optimizing Cryptanalytic Approaches

Limitations of Brute-Forcing
Without precomputed components, cryptanalysis has to rely on traditional methods. Attacking a hash by brute force is
only useful to a certain degree. One of the reasons is that as password length increases, possible combinations grow
exponentially. Let’s take a look at OclHashcat to illustrate our point:

Standard character set of oclHashcat:

 ?l = abcdefghijklmnopqrstuvwxyz
 ?u = ABCDEFGHIJKLMNOPQRSTUVWXYZ
 ?d = 0123456789
 ?s = !“#$%&‘()*+,-./:;<=>?@[\]^_`{|}~
 ?a = ?l?u?d?s

Thus, the mask (?a?a?a?a?a?a?a) [7] corresponds to a seven-character password, which is made up of
lowercase and uppercase characters, digits and special characters.

This combination yields (26+26+10+32)7 = 947 different password options, which corresponds
to 6.484775942×10¹³ possible passwords (64 trillion, 847 billion, 759 million, and 420 thousand). As shown
below, this character set (for a MD5 hash function) can be traversed on the GPU within hours:

 Input.Mode.....: Mask (?a?a?a?a?a?a?a) [7]
 Hash.Target....: 1963754b8c04afa68f520cf214aebdeb
 Hash.Type......: MD5
 Time.Estimated.: 2 hours, 7 mins

As possible combinations increase exponentially with each additional character, a brute-force attack on an eight-
character password with lowercase and uppercase characters, digits and special characters takes several days:

 Input.Mode.....: Mask (?a?a?a?a?a?a?a?a) [8]
 Hash.Target....: 1963754b8c04afa68f520cf214aebdeb
 Hash.Type......: MD5
 Time.Estimated.: 7 days, 5 hours

The attack on a nine-character password already lasts longer than a year:

 Input.Mode.....: Mask (?a?a?a?a?a?a?a?a?a) [9]
 Hash.Target....: 1963754b8c04afa68f520cf214aebdeb
 Hash.Type......: MD5
 Time.Estimated.: 1 year, 353 days

The computing power of the hardware may be linearly increased by adding further graphic cards, however,
if longer and more complex passwords are used, this increase cannot keep up with the exponential growth of
the number of potential character combinations.

A further challenge for efficient brute-forcing concerns the fact that modern hash functions are designed
to make the calculation of the function less performant. The user of a Linux/BSD operating system will
not notice any delay when the Unix crypt SHA-256/512 is applied. However, the performance of the hash
function which computes the hash from the entered password is artificially decreased as may be gathered

Offensive Computer Security

183

from an excerpt of the SHA-256/512 crypt specification by Ulrich Drepper3: “…the SHA-based algorithm
contains a loop which can be run an arbitrary number of times. The more rounds are performed the higher
the CPU requirements are. This is a safety mechanism which might help countering brute-force attacks in the
face of increasing computing power.”

Table 5. Comparison of MD5 with SHA-512 crypt

MD5 SHA-512 crypt
Test hardware: ATI Radeon R9 290x, Hawaii, 3072MB, 1040Mhz, 44MCU
Software: oclHashcat-1.36 (--benchmark -m 0) oclHashcat-1.36 (--benchmark -m 1800)
Speed: 12035.6 MH/s 71437 H/s

Cryptanalysis of an MD5 hash may be carried out with a speed of 12 billion hashes per second. In contrast, only
about 70.000 SHA-512 crypt hashes may be analyzed per second. The increasing use of complex passwords and
the adoption of less performant hash functions underline that brute-forcing is only appropriate in the context of
performant hash functions, such as MD5, or very limited character sets. For other scenarios, cryptanalysis needs
to be optimized with other techniques, some of which will be briefly presented in the next section.

Attack Vector Psychology
Many users are not very creative when it comes to choosing a password. One way to take advantage of this fact
is to use password lists with genuine user-generated passwords. Based on different hacking attacks, several
lists are in circulation, such as the rockyou.txt password list with over 14 million different user-generated
passwords. Wordlists are another option to break trivial passwords. From the Oxford Englisch Dictionary to
the German Duden, various wordlists in text file format are made available online. If the origin of a password
hash is known, this context may be taken into account when searching for or creating wordlists. One could
also make use of lexicons of different domains such as medicine, aviation, music, or employ gazetteers
(containing geographical landmarks) or lists with film titles. These lists may target the user directly, i.e. his or
her professional environment or personal interests.

Crawlers are also interesting in that they spider whole websites and create an index, i.e. a wordlist from the
text of such a website. Passwords of many users follow similar patterns. Many passwords are between 6 and 8
characters long and mostly consist of lower-case characters, with the option of the first letter being upper-case.
Digits and special characters are mostly appended to passwords.

If a hash value originates from a company environment where password complexity policies (such as
8 characters, lower and upper case, digit or special character) are implemented, the search space is restricted,
as all password candidates which do not correspond to the requirements do not have to be tried out. Too
restrictive and complex password quality requirements may thus be paradoxically counterproductive with
respect to password security.

The use of masks in in oclHashcat allows specifying the length and structure of passwords to be searched
for. A possible mask for a password with the above mentioned requirements would be “?u?l?l?l?l?l?l?d”. The
password “Consult1” would, for example, be a fitting password.

In addition, oclHashcat allows you to develop complex rules based upon which wordlists may be built or be
manipulated. A rule could, for example, traverse all words of a wordlist and replace all “a”s by “@”, all “o”s by
“0” to generate “P@ssw0rd123” out of “Password123”. The rules may be increased in complexity as required.
Predefined rulesets of various cryptanalysis groups are available online or already supplied by oclHashcat.
However, the most effective rulesets are treated as “secrets of success” and therefore not disclosed to the
public. Password lists and wordlists may be extended by masks and rules. This mode is called hybrid attack.
The mask or rule may thus be prepended or appended to the (pass)word.

Example: Say you search for a hash value of the unknown password “Susanna1984” and the rockyou password
list does not yield a match, as precisely this password is not covered by the list. However, in the rockyou.txt
password list, the following passwords starting with “Susanna” are included:
3 Ulrich Drepper SHA-256/512-Crypt specification, reference implementation, and test vectors http://www.akkadia.org/drepper/SHA-crypt.txt

Offensive Computer Security

184

Susannah Susannah58 Susannah123 Susanna99
Susanna91 Susanna79 Susanna33 Susanna27
Susanna1 Susanna

If the mask ?d?d?d (digit, digit, digit) is appended to the password list, passwords in the rockyou list are
extended to include:

Susannah?d?d?d Susannah58?d?d? Susannah123?d?d?d Susanna99?d?d?d
Susanna91?d?d?d Susanna79?d?d?d Susanna33?d?d?d Susanna27?d?d?d
Susanna1?d?d?d Susanna?d?d?d

In the entry „Susanna1?d?d?d“ all digits from Susanna1“000“ to Susanna1“999“ are tried out, which will
lead to a match with Susanna1“984“.

Rules allow for very complex manipulations of words in word- and password lists. A rule could define
that all „o“s and all „s“s be replaced by „0” and „$“ respectively to generate the string „Pa$$w0rd“ out of
„Password“. Another function returns for instance the word from the wordlist spelled backwards such that
„Password” returns the string „drowssaP“. Many more rules are applicable and may be combined as needed.
John the Ripper, as well as hashcat, supports the use of rules.

The combinator attack puts each word of a password list or a wordlist together with each word from one or
more lists. The combinatory attack may also be applied two or more times to the same list. This attack can be
combined with the other attack methods mentioned above as desired. This attack can be useful to crack word
doubling or pass phrases. A very performant enhancement to the word combination approach was published
by Jens Steube, the key developer of hashcat, called prince attack. The prince attack combines all input
words in all possible combinations, whereby the number of elements to be generated may be defined.

Attacks Based on Statistics
If an entire list of hashes needs to be analyzed, as, for example, when doing an IT security audit where
the strength of passwords chosen by users are examined, it is worth analyzing already broken hashes to
efficiently attack the remaining hashes. The advantage of this method is to discover patterns which users
in a specific environment employ when choosing a password.

When breaking the hashes in the „linkedin“ hash list, it becomes clear, after the discovery of the first half of the
passwords, that many users employ a variation of the word „linkedin“ as a password. With this in mind, one
can specifically search for mutations and combinations of the string “linkedin”, which results in the discovery
of more complex passwords.4 PACK, short for „Password Analysis and Cracking Kit“5, provides extensive
analysis capabilities for this purpose. The toolkit examines user passwords and produces custom masks for
further attacks. Thus, with PACK it is possible, amongst others, to benchmark the systems and hash function
in order to generate all masks which may be traversed in a freely defined timeframe.

4 See Yiannis Chrysanthou, “I have the HASHCAT so I make the rules”http://hashcat.net/events/p14-vegas/I%20have%20the%20%23cat%20i%20make%20
the%20rules_YC.pdf

5 https://thesprawl.org/projects/pack/

Offensive Computer Security

185

Sample analysis of the rockyou.txt password list:

 _
 StatsGen #.#.# | |
 _ __ __ _ ___| | _
 | ‚_ \ / _` |/ __| |/ /
 | |_) | (_| | (__| <
 | .__/ __,_|___|_|_\
 | |
 |_| iphelix@thesprawl.org

 [*] Analyzing passwords in [rockyou.txt]
 [+] Analyzing 100% (14344390/14344390) of passwords
 NOTE: Statistics below is relative to the number of analyzed passwords, not total number
of passwords

 [*] Length:
 [+] 8: 20% (2966037)
 [+] 7: 17% (2506271)
 [+] 9: 15% (2191039)
 [+] 10: 14% (2013695)
 [+] 6: 13% (1947798)
 ...

 [*] Character-set:
 [+] loweralphanum: 42% (6074867)
 [+] loweralpha: 25% (3726129)
 [+] numeric: 16% (2346744)
 [+] loweralphaspecialnum: 02% (426353)
 [+] upperalphanum: 02% (407431)
 ...

 [*] Password complexity:
 [+] digit: min(0) max(255)
 [+] lower: min(0) max(255)
 [+] upper: min(0) max(187)
 [+] special: min(0) max(255)

 [*] Simple Masks:
 [+] stringdigit: 37% (5339556)
 [+] string: 28% (4115314)
 [+] digit: 16% (2346744)
 [+] digitstring: 04% (663951)
 [+] othermask: 04% (576324)
 ...

 [*] Advanced Masks:
 [+] ?l?l?l?l?l?l?l?l: 04% (687991)
 [+] ?l?l?l?l?l?l: 04% (601152)
 [+] ?l?l?l?l?l?l?l: 04% (585013)
 [+] ?l?l?l?l?l?l?l?l?l: 03% (516830)
 [+] ?d?d?d?d?d?d?d: 03% (487429)
 ...

The mathematical model of Markov chains may be used to generate word lists based on the analysis of
existing texts. Instead of trying out all possible combinations of passwords, a statistical model decides which
characters based on the analysis of the wordlist appear frequently one after the other.

Offensive Computer Security

186

Conclusion
In this article, we have discussed the basics of hash cracking and the various ways to optimize this process.
Getting an overview of the diverse methods and tools is a starting point, but it is much more difficult to
combine them efficiently and in a helpful way. The fact that complex and supposedly secure passwords like
„n3xtb1gth1ng“, „m27bufford“ or „Oscar+emmy2“ may actually be broken, is impressively demonstrated by
the results of regularly held competitions. Considering these facts may shed a new light on how we choose our
own passwords, the consequences of which we will leave up to the reader.

About the Author
The author Immanuel Willi works as a Security Consultant at Oneconsult AG, which specializes in
penetration tests, ISO 27001 security audits and IT forensics. He has been exploring and researching the
topic of password cracking for many years.

www.oneconsult.com

	Cover
	Table of Contents
	Getting Started with Kali
	Navigating Kali

	BASH Basics
	BASH Scripting Basics
	Creating a BASH script scanner

	Netcat, the All- Powerful
	Netcat Basics
	Create a Simple TCP Connection
	Opening TCP connection between two machines for “chat”
	Transferring Files with Netcat
	Remote Administration with netcat
	Cryptcat

	TCP/IP and Wireshark
	TCP Header
	IP Header
	Wireshark
	Examine Packets
	Opening TCP and IP headers
	Display Filters
	Filtering for Payload Information
	Following TCP Streams

	Information Gathering Techniques
	Introduction
	Conclusion

	Email Scraping
	goog- mail
	Maltego
	The Harvester

	Shodan
	Shodan HQ
	Shodan Search Syntax

	Netcraft
	Netcraft
	Whois

	Information Gathering using DNS
	Querying DNS about the target
	Using the Host command to resolve IP addresses
	Bruteforcing Subdomains using dnsenum.pl
	Conclusion

	Information Gathering from SNMP
	Background on SNMP
	SNMP Versions
	Abusing SNMP for Information Gathering
	Cracking SNMP community strings

	Information Gathering from SNMP
	Introduction to Maltego
	Getting Started with Maltego

	Port Scanning
	nmap
	Nmap Syntax
	The Most Reliable, but Least Stealthy Scan
	Stealthy Scan (S)
	Scanning an Entire Subnet and Only Looking for a Particular Port
	Scanning a Range of IP addresses and Ports
	Other nmap Capabilities
	Saving our Scan Results to a File

	Evading Firewalls and IDS
	Ping Suppression
	Fooling the Firewall into Believing that the Packet is Part of an Established Connection
	Fragmentation
	Decoys
	Using Proxies
	Timing Features
	Changing the Data length
	Best Practice

	Nmap Scripting Engine (NSE)
	Types of Scripts
	Finding NSE scripts
	NSE Syntax
	NSE Help
	Some Scanning and Discovery scripts
	Traceroute Geolocation
	Conclusion

	Port Scanning
	Hping3 Help
	Using Hping3 in Default Mode for Port Scanning
	Fragmenting Packets
	Sending Data via Hping3
	Predicting Sequence Numbers
	Using Hping3 to get the System Uptime

	Operating System (OS) Fingerprinting
	TCP/IP
	p0F

	Port Scanning with Unicornscan
	Unicornscan Introduction
	Unicornscan Help
	TCP Scanning
	UDP Scanning
	Saving to a PCAP file
	Unicornscan Cheat Sheet

	ARPspoofing and MiTM
	What is ARP?
	Arpspoof
	MiTM using arpspoof and dsniff
	Dsniff

	MiTM with Ettercap
	Start ettercap

	DNS Spoofing with dnspoof
	Hosts file
	Start the Webserver
	Create Fake Web site
	Flush the DNS on the Victim
	Start dnsspoof

	Using MiTM with driftnet to View the Target’s Images
	Our Scenario
	Use dnsspoof to place ourselves in the middle
	Set up driftnet
	View the Images
	Find the stored Images

	Using a MiTM attack to Spy on the Target
	Scenario
	Set Up a MiTM
	Spying with Wireshark
	Spying with Snort
	Download Snort
	Snort Rules
	Local rules
	Snort Configuration

	Using Ettercap to Alter Messages/Packets
	Scenario
	MiTM with Ettercap
	Intranet Site
	Ettercap Filters
	Compile Filter
	Add the Filter to Ettercap

	MiTM attacks, Hijacking Software Updates
	Open a Terminal and start evilgrade
	Generate Payload in Metasploit
	Download and Install Notepad+
	Setting Up our MiTM
	Set Up a Netcat Listener

	Buffer Overflow Exploitation
	Some Definitions
	Anatomy of Buffer Overflow
	The Threat of Buffer Overflows
	Coming Up Next

	Buffer Overflow Exploitation
	Open an IDE
	Writing our Buffer Overflow
	Overflow the Website Variable
	Conclusion

	Buffer Overflow Exploitation, Fuzzing
	What is Fuzzing?
	The BED Fuzzer
	Fuzzing with Metasploit

	Exploit Development: Fuzzing with Spike
	Download and Install vulnserver.exe
	Fuzzing with Spike
	Creating our own fuzzing script in Spike
	Conclusion

	Working with Exploits
	Searching for Vulnerabilities
	Moving the Code for Use in Metasploit Framework

	Working with Exploits: Using Exploit-DB to find Exploits
	Exploit DB
	Exploit-DB Advanced Search
	Exploit-DB in Kali
	Conclusion

	Password Cracking – Beyond Brute-Force
	Current Methods and Approaches
	Conclusion

	Making The Call: Six Keys To An Effective BYOD Tech Policy
	Define Ownership
	Describe Acceptable Use
	Decide On Support
	Deploy Effective Controls
	Don’t Complicate the Process
	Develop Employee Confidence

	190.pdf
	Cover
	Table of Contents
	Getting Started with Kali
	Navigating Kali

	BASH Basics
	BASH Scripting Basics
	Creating a BASH script scanner

	Netcat, the All- Powerful
	Netcat Basics
	Create a Simple TCP Connection
	Opening TCP connection between two machines for “chat”
	Transferring Files with Netcat
	Remote Administration with netcat
	Cryptcat

	TCP/IP and Wireshark
	TCP Header
	IP Header
	Wireshark
	Examine Packets
	Opening TCP and IP headers
	Display Filters
	Filtering for Payload Information
	Following TCP Streams

	Information Gathering Techniques
	Introduction
	Conclusion

	Email Scraping
	goog- mail
	Maltego
	The Harvester

	Shodan
	Shodan HQ
	Shodan Search Syntax

	Netcraft
	Netcraft
	Whois

	Information Gathering using DNS
	Querying DNS about the target
	Using the Host command to resolve IP addresses
	Bruteforcing Subdomains using dnsenum.pl
	Conclusion

	Information Gathering from SNMP
	Background on SNMP
	SNMP Versions
	Abusing SNMP for Information Gathering
	Cracking SNMP community strings

	Information Gathering from SNMP
	Introduction to Maltego
	Getting Started with Maltego

	Port Scanning
	nmap
	Nmap Syntax
	The Most Reliable, but Least Stealthy Scan
	Stealthy Scan (S)
	Scanning an Entire Subnet and Only Looking for a Particular Port
	Scanning a Range of IP addresses and Ports
	Other nmap Capabilities
	Saving our Scan Results to a File

	Evading Firewalls and IDS
	Ping Suppression
	Fooling the Firewall into Believing that the Packet is Part of an Established Connection
	Fragmentation
	Decoys
	Using Proxies
	Timing Features
	Changing the Data length
	Best Practice

	Nmap Scripting Engine (NSE)
	Types of Scripts
	Finding NSE scripts
	NSE Syntax
	NSE Help
	Some Scanning and Discovery scripts
	Traceroute Geolocation
	Conclusion

	Port Scanning
	Hping3 Help
	Using Hping3 in Default Mode for Port Scanning
	Fragmenting Packets
	Sending Data via Hping3
	Predicting Sequence Numbers
	Using Hping3 to get the System Uptime

	Operating System (OS) Fingerprinting
	TCP/IP
	p0F

	Port Scanning with Unicornscan
	Unicornscan Introduction
	Unicornscan Help
	TCP Scanning
	UDP Scanning
	Saving to a PCAP file
	Unicornscan Cheat Sheet

	ARPspoofing and MiTM
	What is ARP?
	Arpspoof
	MiTM using arpspoof and dsniff
	Dsniff

	MiTM with Ettercap
	Start ettercap

	DNS Spoofing with dnspoof
	Hosts file
	Start the Webserver
	Create Fake Web site
	Flush the DNS on the Victim
	Start dnsspoof

	Using MiTM with driftnet to View the Target’s Images
	Our Scenario
	Use dnsspoof to place ourselves in the middle
	Set up driftnet
	View the Images
	Find the stored Images

	Using a MiTM attack to Spy on the Target
	Scenario
	Set Up a MiTM
	Spying with Wireshark
	Spying with Snort
	Download Snort
	Snort Rules
	Local rules
	Snort Configuration

	Using Ettercap to Alter Messages/Packets
	Scenario
	MiTM with Ettercap
	Intranet Site
	Ettercap Filters
	Compile Filter
	Add the Filter to Ettercap

	MiTM attacks, Hijacking Software Updates
	Open a Terminal and start evilgrade
	Generate Payload in Metasploit
	Download and Install Notepad+
	Setting Up our MiTM
	Set Up a Netcat Listener

	Buffer Overflow Exploitation
	Some Definitions
	Anatomy of Buffer Overflow
	The Threat of Buffer Overflows
	Coming Up Next

	Buffer Overflow Exploitation
	Open an IDE
	Writing our Buffer Overflow
	Overflow the Website Variable
	Conclusion

	Buffer Overflow Exploitation, Fuzzing
	What is Fuzzing?
	The BED Fuzzer
	Fuzzing with Metasploit

	Exploit Development: Fuzzing with Spike
	Download and Install vulnserver.exe
	Fuzzing with Spike
	Creating our own fuzzing script in Spike
	Conclusion

	Working with Exploits
	Searching for Vulnerabilities
	Moving the Code for Use in Metasploit Framework

	Working with Exploits: Using Exploit-DB to find Exploits
	Exploit DB
	Exploit-DB Advanced Search
	Exploit-DB in Kali
	Conclusion

	Password Cracking – Beyond Brute-Force
	Current Methods and Approaches
	Conclusion

	Making The Call: Six Keys To An Effective BYOD Tech Policy
	Define Ownership
	Describe Acceptable Use
	Decide On Support
	Deploy Effective Controls
	Don’t Complicate the Process
	Develop Employee Confidence

	Getting Started with Kali
	by Keith DeBus

	BASH Basics
	by Keith DeBus

	Netcat, the All- Powerful
	by Keith DeBus

	TCP/IP and Wireshark
	by Keith DeBus

	Information Gathering Techniques
	by Keith DeBus

	Email Scraping
	by Keith DeBus

	Shodan
	by Keith DeBus

	Netcraft
	by Keith DeBus

	Information Gathering using DNS
	by Keith DeBus

	Information Gathering from SNMP
	by Keith DeBus

	Information Gathering from SNMP
	by Keith DeBus

	Port Scanning
	by Keith DeBus

	Evading Firewalls and IDS
	by Keith DeBus

	Nmap Scripting Engine (NSE)
	by Keith DeBus

	Port Scanning
	by Keith DeBus

	Operating System (OS) Fingerprinting
	by Keith DeBus

	Port Scanning with Unicornscan
	by Keith DeBus

	ARPspoofing and MiTM
	by Keith DeBus

	MiTM with Ettercap
	by Keith DeBus

	DNS Spoofing with dnspoof
	by Keith DeBus

	Using MiTM with driftnet to View the Target’s Images
	by Keith DeBus

	Using a MiTM attack to Spy on the Target
	by Keith DeBus

	Using Ettercap to Alter Messages/Packets
	by Keith DeBus

	MiTM attacks, Hijacking Software Updates
	by Keith DeBus

	Buffer Overflow Exploitation
	by Keith DeBus

	Buffer Overflow Exploitation
	by Keith DeBus

	Buffer Overflow Exploitation, Fuzzing
	by Keith DeBus

	Exploit Development: Fuzzing with Spike
	by Keith DeBus

	Working with Exploits
	by Keith DeBus

	Working with Exploits: Using Exploit-DB to find Exploits
	by Keith DeBus

	Password Cracking – Beyond Brute-Force
	by Immanuel Willi

	Making The Call: Six Keys To An Effective BYOD Tech Policy
	by Martin Johnson

